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ERGODICITY AND STEADY-STATE EQUILIBRIUM CONDITIONS

FOR MARKOV CHAINS

by
Leonidas Georgiadis and P. Papantoni-Kazakos
Department of Electrical Engineering and Computer Science
U-157

The University of Connecticut
Storrs, Connecticut 06268

Abstract

Generalized stationary Markov chains with denumerable state space are considered.
For irreducible and aperiodic such chains, some sufficient conditions for ergodicity
and steady-state equilibrium are developed. The conditions for ergodicity are

generalizations of previously proposed such conditions, and they are more tractable

for certain applications.

This work was supported by the U.S. Air Force Office of Scientific Research,
under the grant, AFOSR-83-0229,

"‘7;"'.7'1'

P SRy




At nuode At an mae mas ot Mab B Ak St it fad Sed- Lo Baid T T T T R TR T TR T TR e T AR T LTIV QT AT @R - T e T T e e Te T8 77 2 m B W

1. Introduction

The analysis of several stochastic models gives rise to ergodicity and steady-
state equilibrium studies of Markov chains. When a Markov chain is irreducible and
aperiodic, with state space, C, and transition probabilities, {pji}’ a necessary and
sufficient condition for ergodicity is that a solution of the following system exists.

1rJ,= Epji"i;ﬂizo;‘li’ Zni=1
ieC ieC

The study of the above system requires explicit knowledge of all the tramsition
probabilities, {Pji}’ and for large dimensionality state spaces, C, the search for
its solution becomes practically impossible. Recognizing this fact, several re-
searchers provided simplified ergodicity conditions, for certain classes of Markov
chains. Pakes (1969} derived a sufficient condition for ergodicity of Markov
chains, {Xn}, that is solely based on the expected conditional drifts, E{Xn+1-xnlxh=k}.
Kaplan (1979) provided a criterion for nonergodicity of a Markov chain, which is
again based on the expected conditional drifts, and on certain imposed conditions
on the transition probabilities. Szpankowski (1981) generalized the conditions given
by Pakes and Kaplan, using Lyapunov functions. Szpankowski's approach is especially
useful, when the Markov chain state space is not the natural numbers.

In this paper, we generalize Szpankowski's sufficient conditions for ergodicity
of Markov chains. In addition, we provide conditions for steady-state equilibrium

of irreducible, aperiodic, and ergodic Markov chains, with denumerable state spaces.

2. Ergodicity Conditions

Let {xn} denote a generalized stationary Markov chain, with denumerable state
space, C. We allow multidimensional states. Since the state space, C, is denumerable,
we assign a unique natural number to each state. Then, the expressions ke and Xn=k
denote respectively, the state in C that has been assigned the natural number k, and
the nth in time (multidimensional) datum from the chain being identical to the state

identified as k. Let, {pzk;l,keC}, be the set of the stationary transition proba-
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- bilities of the chain. That is,
| A
. oy - P(xn+l=1.lxn=k) s £, keC
4
Let us denote,
' @ B oy cple o
i Ppp - P(X =L|X =k)

Let R denote the real line, and let V: C + R be a functional defined on the

state space, C, such that,
Ja:v(k)ga>—°°;VkeC (1)
Let us then define,

s £ E(v(x , )V ) % =k} = Y (VDY@ Ipyy 5 keC 2)
LeC

The quantity S(k) in (2) represents conditional expected drift of the Markov

chain, {V(Xn)}. From now on, whenever the expected value, E{f(Xn)} = Z E(Z)P(Xn-'l),
LeC
is used, for some functional, £ : C + R, the implied assumptions will be that,

Zf(l) =0; VA# P, and that at least one of the partial sums, Z f(Z)P(Xn--C)
LeA

L:£(L)<0
and Z £(L) P(Xn=£) , is finite. The series, Zf 04):1¢ xn=£) , is then inambiguous,

L:£(8)>0 LeC

g and when it converges, it converges absolutely; that is, f(Xn) is then summable. We 4
_‘-‘ now express two propositions. .
: :
'i Proposition 1 i
S v
i Let there exist £ in C, and some positive finite number, b, such that, ¥
- :
»E; V(&) <=, P(X=£) =1 and S(k) <b ; ¥ keC '
. '
(n) -
: Then, for all n, the expected values, E{IV(Xn+1)-V(Xn) |} = ZIS(k) ipkl. and

[ keC -
t'; {
. .
4

E }
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4

- E{IV(Xn)I} :E:IV(K)kaZ , are both finite. Thus, in conjuction with (1), we
. keC

! then obtain,

g o< E{V(Xn+1)} = E{V(Xn)} + E{V(X RE{S )} = E{V(X )} + ZS(k)p(n) (3)
- keC

Proof

Let, € & {k: s <0} and ¢ 8 {k : S(k) > 0}. Then, 0 < E s () ptW <

74
keCt
<b Z:plfz) = b; thus, the series E S(k)p&) is then defined, for all n. That is,
keC keCt
Z S(p < ; ¥a | (4)
keCt

' Let us now turn to the variable V(Xn). Due to (1) and the assumptions in the
proposition, we have, IV(Z)I < ®, Let us select n, and let us temporarily assume
that V(Xn) is summable; that is, :E: ‘V(k)|?(xh=k) < = ; YAc(C. Then, in conjuction

keA
with (1), we obtain,

S(k) > a ~ V(k)

Thus,

02 Y stpp 20 X pp - Y V0RE ) > (s)
keC~ keC™ keC-

So, if V(Xn) is summable, we conclude from (4) and (5),

R T e A B T F R T LT e L e w® -y =

[

> 1 - (n) _ (n) (n)

2 E{Iv(x ,)-v(x ) [} = Y Istlpy = - D sty + Zsm <o (6)

. keC keC~

o

;‘ Now, since V(Xn+1) = [v(xn+1)-v(xn)] + V(Xn), and starting with the initial condition,

{ [v(£)| < =, we can easily complete the proof of the proposition by induction,
observing that the summability of V(X ) and v(xn+l)-V(xn), implies summability of

' V(xrrl-l)'

v

.
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; Remark 1 f
. -4
i If in proposition 1, the state £ is such that, 0 < P(Xo=£) <1and |[V(&)| < =, i;
; the results in the proposition hold if, E{IV(Xn)I}, E{lv(xn+1)-V(xn)|}, E{V(Xn)},

) and E{V(xn+1)-V(Xn)} are respectively substituted by the conditional expectations,

N E{|v(x ) i/x =2}, E{lV(Xn+1)-V(Xn)l/XO=U. E(V(X )/X =2}, and E{V(X_, )-V(X )/X =L}.

Proposition 2

Let there exist a positive finite number, b, such that, S(k) < b; V keC. Then,

Zim Z S(k)pl((z) 20 ; ¥ 2eC: P(X =8) >0 (7)
2> kel

Proof

Let us assume that (7) is false. Then, there exists some state £eC, such that

SRR | BB

P(Xo=l) > 0, and for this state there exist 6§ > 0 and natural number Na’ such that,

Ystoply < -6 ¥ >N 8
keC

From expression (3) in proposition 1, modified as in remark 1, in conjuction

with (8), we then conclude,

E{V(X ;) |x°=1.} < E{v(x ) lxo-/Z.} - 8; ¥n >N,

And thus,

: E{V(XN6+k) |x =£} < E{V(XNG) |x =L} - k6 ; ¥ k (9) }
3
b =4
- But, from proposition 1 we conclude, E{V(xN6)|X°=£} < o, Thus, (9) gives then, g

£im E{V(xn)lxo=l} = .o which is impossible due to (3). We thus conclude that (7) »

n-m ,':
- is true. .
‘ i
! Remark 2 ‘
. The statement in proposition 2 holds for any process, {Xn}, with denumerable

state space, whose expected drifts are time invariant, if E{IV(XO)I} < o, and if

- Lo
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the probability, pig), in the proposition, is replaced by the probability, P(xn = k).

We now express the main result of this section in a lemma. The lemma states
a sufficient condition, for ergodicity of a generalized irreducible and aperiodic

Markov chain.

Lemma 1

Let {Xn} be a generalized irreducible and aperiodic Markov chain, with denumerable

state space, C. Let £ be some state in C, such that, P(Xo=£) > 0. Let there exist,

W
il et ssinaiilekctedududaninlol kiR

€ >0, H1CC, a set, {dk}, of positive finite constants, and a positive and finite

constant b, such that,

S(k) < -¢€; ¥ keHl and - € <S(k) <b ; ¥ kEHZ = C - H1

(n) )
:E: d <= and pl’ <d ; ¥n, ¥ ke,
keHz

Then, the Markov chain, {Xn}, is ergodic.

Proof

Since the Markov chain is irreducible and aperiodic, the limit, L Lim p(n)

u ’
always exists, and it is independent of the state, £.
Now,
keC keHl ke:H2 keHZ keH2
> Z s(k)p&) < - e+E [s(k)+e]p“‘) (10)
keC keH2

- (n)
Since lS(k)+e|pk£ < (b+£)dk s ¥ kE:H2 ; ¥n, and :E: dk < o, the series on the right
keH2

side of (10) converges uniformly in n. Hence,
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Lim ZS(k)p‘(:é) < - €+ Lim Z [S(k)+e]pl((2) = - g+ Z [sCy+elm, (D
7% kel e keH2 keH2

But, for the simultaneous satisfaction of inequality (11), and inequality (7)

in proposition 2, it is necessary that, :E: lS(k)+€]1rk > 0, which implies that m, > O,
kst

for some k in HZ' Thus, the chain is ergodic.

k

The conditions in the lemma are relatively general, and they imply the conditions
for ergodicity, given by Szpankowski (1981). 1In fact, the latter conditions evolve

as a corollary of lemma 1, which is expressed below.

Corollary 1

If the set H2 in the lemma is finite, then dk =1; ¥ keHﬁ satisfies the condition,

:E: d_ < ®. Thus, the irreducible and aperiodic Markov chain, {Xn}, is then ergodic.
keH2

3. Equilibrium Conditions

In this section, we consider steady-state equilibrium conditions, for generalized
irreducible and aperiodic Markov chains. We use the same notation and quantities, as

in section 2. We first present a proposition,

Proposition 3

Let, {Xn}, be a generalized, irreducible, and aperiodic Markov chain, with
denumerable state space, C. Let there exist a positive and finite constant, b, such

that, S(k) < b ; ¥ keéC, and let the chain be ergodic. Then,

0<Y stiom <b (12)
keC

; where,
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Proof

Let the subspaces, C* and C”, be defined as in the proof of proposition 1.

We then obtain, for given n,

Tm  3stpg (@) _ zm( Y sty + 25 sp ‘“)) < J
y

keC keC~ keCt

<Tm 3 stp &+ Tm E s(pp (13)
n—)oo

e keC™

Since, 0 < S(k) < b; ¥ keC*, and since :E: ptz) converges uniformly in n

keCt ]
(see Chung (1960), Th. 4), the sum, :E: S(k)piz), converges uniformly in n as well.
keCt
Thus, Zim :E: S(k)p(n) :E: S(k)ﬂk. Since S(k) < 0 ; % keC~, applying Fatou's

n->o

keCt keCt

lemma, we obtain,

Zim Z S(k)p (“) < E s(k)m_< 0
n>e keC- keC™

From the above, in conjuction with (13), we thus obtain,

n-roo

0<Tim Y S(k)p < Dostom + 2. stom = 3 stom <b

; keC keC™ keCt keC
- The proof of the proposition is now complete.
".
g
r: We now express the main result of this section in a lemma.
b
-
™ Lemma 2
.,
S
‘ Let the generalized Markov chain, {Xn}, be irreducible, aperiodic, and ergodic,
‘: with denumerable state space, C. Let either one of the following conditions hold,
Y
;} where V(-) is a functional as in section 2. .
-.
. 1
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_ (i) :E:[V(k)lnk <
- keC

A ,.  (n)
; where 1= Zfim p
k o kL

(ii) There exists positive and finite number, B, such that,

E{[v(X ,)-V(X ) [/X =K} < B ; ¥ keC

Then, Q

:E:S(k)"k =0 (14) X
keC :

Proof

(a) If condition (i) is satisfied, then V(Xo) and V(Xl) are both integrable and

Thus,

they have the same distribution, if P(Xo = k) = m-

0 = E{v(x))-v(x )} = E{E{V(Xl)-V(XO)IXO}} = :E:S(k)ﬂk

keC
which proves the lemma, if condition (i) is true.

(b) Let condition (ii) be satisfied. Via proposition 3, the series :E:S(k)wk

converges absolutely. Thus (Chung (1960), Th. 2), keC
n
-1 _ _
P(zim n :E: s(x,) = :E:S(k)wk) =1 (15)
n-+o
i=0 keC

Let us now assume that there exists state £ in C, such that, P(Xo =2) = 1.

Let then, Tk ; k > 0, denote the time of the kth visit to state £. The sequence,

-
K31 B

y {Tk}’ forms a renewal process, and the process, {S(Xi)}, is regenerative with respect

LI

to, {Tk}. But, due to the ergodicity assumption, we have, E{Tl} < ©  and, N

Is(k) | = |E{v(xn+1)-v(xn)|xn=k}|_5 E{IV(xn+1)-v(xn)|/xn=k}.5 B ; ¥ keC

* 5 NS 1 J

Therefore,
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-1
E IZ s(x)| <B-E{M}<e (16)
n=0

From Stidham (1972), and due to (16) we then conclude,

n T.-1
1
P(I.im a~l Z s(x,) = g1 {r,} - Egz S(xn)t)= 1 a7
e i=0 n=0

From (15) and (17), we then conclude,

T -1 1
-1 :
E {1} -E z s(xn)$~ = ZS(k)"k (18) :
n=0 keC K
-
Given, P(XO = L) = 1, let us define, !
n ]
A ]
Y £ E [E{v(x) X _;} - v(X)] ;0 2>1 (19) R
i=1 3
n-1 n-1
A
z = D osx) = YRV, ) X} - V)] =
1=0 i=0
n
= Z [E:{v(xi)lxi_1 }-vx, )1 =
i=1 '
n
= Z [EVE) X} - VX)) + (V) -V(X_;))] ‘
=1
n :J
= D0 VXDV, D]+ Y = VX)-V(X) +Y ;n>1 :
i=1 ?
+2z = v(xn)-v(L) +Y ;021 (20)
Due to proposition 1, we have, E{IV(Xi)I} <o ¥ i. Due to the Markovian i

assumption, we have, E{V(Xi)lx ..,xo} = E{v(xi)lxi_l}. Thus, the process, {Y_},

i-1°°
in (19) is a martingale, with respect to the process, {Xn}, (see Karlin et al (1975),

..........................
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p. 240, ex. b). We now obtain,

|Yn+1 - Ynl = IE{V(Xn+1)|Xn} - v(xn+1)l = [e{vix ) - v(xn)]xn} -

- VR L) = D] > Y, =Y <B4 VR ) - V) |

n+l

+ E{JY_,, - Ynllxn,...,xo} <B+ E{IV(Xn+1) - V() |/ xn,...,xo} =
=B + E{lV(Xn+1) - v(xn)|/xn} <2B; ¥n >1, due to condition (ii). (21)

Since now Tl is a Markov time with respect to {Xn}, and since E {Tl} < ®©, ywe

obtain in conjuction with (21) and corollary 3.1, page 260, in Karlin et al (1975),

E{YTl} = E{Y,} = E{E{(v(x) [Xx } - v(x)D} =0 (22)

From (20) and (22), we then obtain,

E{le} = E{v(le) - v + YTl} = V(&) - V(D) + E{YTI} =0 (23) r
Tl-l

From (20) and (23), we conclude, E{ Z S(Xi): = 0; expression (18) thus gives,
i=

° |
Z:s(k)wk =0

keC
The proof of the lemma is now complete.

Remark 3

We note that conditions (i) and (ii), in lemma 2, are such that the one does
not imply the other. Condition (ii) does not involve limiting probabilities; thus,
it may be more applicable in practice. We note that in the proof of lemma 2, the
regenerative process, {S(Xi)}, may be such that, S(Xi) > - D, for some D positive
and finite. Then, the proof works, via the substitution, S'(Xi) 4 S(xi) + D. In

contrast, the regenerative process, {S(Xi)}, has been assumed nonnegative in Stidman

(1972).

--------------
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Lemma 2 provides sufficient conditions for the existence of steady-state

equilibrium, in generalized, irreducible, aperiodic, and ergodic Markov chains,

with denumerable state space.

4. An Example h

One of the many applications of Markov chains lies with the analysis of "limited
feedback sensing" random access algorithms, for computer-communication data networks.
The "limited feedback sensing" class of random access algorithms requires that each
user monitor the feedback from the time he generates a new packet, to the time when
this packet is successfully transmitted, and it finds numerous applications in many
real systems. The algorithms within this class frequently induce irreducible and
aperiodic Markov chains, with denumerable state space. Sufficient conditions for
the ergodicity of those chains, provide then lower bounds on the throughput of the
algorithms. Sufficient conditions for steady state equilibrium, provide the means
for the evaluation of useful algorithmic statistical properties. Here, we will
use the results in lemma 2 of this paper, to evaluate such properties for one of the
algorithms in Vvedenskaya and Tsybakov (1982).

Let us consider algorithm A in Vvedenskaya and Tsybakov. The analysis of the
algorithm is facilitated by the concept of a marker, as described in the above

reference. The marker can take the integer values, -1, 0, 1, 2, ... . If the

marker takes the value, -1, at some point in time, it maintains this value, until a
collision is encountered. Upon the occurrence of the latter event, the marker takes
the value, 1. From that point on, the marker updates its values, following the rules
of the algorithm, until it takes again the value, -1, at which point it completes a
session. It then repeats the above process. Let time be measured in slot units,

and let, M,, denote the value of the marker at time, i. If Mi-z 0, let Oi denote

1’

the number of packets that at time i are in cell #k of the stack, whose state

represents the algorithmic state. If M = -1, let Ofl denote the number of packets

in cell #0 of the stack. The numbers, {Ot} and {Mi}’ are random variables. Let us
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) then define the random vector, )(1 = [Oo, Ol""’OM , Mi]' From the operation of the

i
I algorithm, it is easily concluded that the process, {Xi}; i > 0 is a Markov chain,

o0
with state space, C = U Gk, where,
k=-1

{[6,,0,,...,6,,k] ; 6 ¢ NE k>0

A L AN L
~

o - . ke
" {[ _1’ 1] » e—l € NO}, k 1

Since all the sets in Gk above are denumerable, so is C. Furthermore, the

8 L

process, {Xi}; i > 0, is irreducible and aperiodic.

Let, {ek} and {mi}, denote respectively realizations of the sequences, {at}

;i and {Mi}. Given keC, let us then define,

m
A k
v(k) = 26120
i=-1

It can be easily verified that, E{IV(X1+1)—V(X1)|/X1 = k}, satisfies condition

(ii) in lemma 2, and that,

E{v(x,,) - v(xX)/x, = [6,...,6 ,n]} =X i£6 >2
E(V(X,,)) - V(X)/X, = [6_;,-11} =A; i£0,>2
¥ EQV(R,, ) - V(X)/X = [1,6,,6,,...,8 ,m]} = -1 + A
-
;ff: E{V(Xi+1) - v(xi)/xjl = (1,-1]} = -1 4 A
4
g Elv(x,,,) - v(x)/x, = [0, 61,---.9m.m]} =2
o
3 E{v(x ) - V&X)/X, = [o,-11} =)
p <
4
L ; where A is the intensity of the Poisson user process.
2
Ej; Thus, from lemma 2 and the above, we conclude that in the A - region, where the
5
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process, {Xi}; i > 0, is ergodic, we have,

Yostom = A :E: Mo+ -1+ ) >, =0~

keC k:9° and 9_1#1 k:eo or 9_1-1

<> n =k

k
k:6 or 6 =1
o -1

The left part of the above equality represents the limiting probability of
successful transmission. The equation expresses then the fact that in the A - region,
where the process, {Xi}; i >0, is ergodic, the input traffic rate equals the output
traffic rate.

Given k in C, let us now define,
' é ' e
v (k) V ([eo,el.ooo'em]) mkz-l

For the functional, V'(k), above, condition (ii) in lemma 2 is again satisfied,

and,

] - 1 = = -
E{V' (X, ) - V' (X)/X = [8,...,6,m]} =1 ; if 6 >2
1 ] - 1 ] - - = N
E{VI (X, ;) - VI(X)D/X = [6_,,-1]} 2 ;i£ 6 >2
' - ' = B -
E{v (x1+1) v (xi)/x]l [1,01,...,6m,m]} 1
] ' = = -
E{V'(X;,,) - V' (X))/X = [0,0/,...,8,m]}= -1
N
' -y - - - U - = - - \"
E{v (Xpyp) = V'X/X = (1, 11} = E{v (X)) - vV'(x)/x, = [0, 1]} =0 :
S
Thus, from lemma 2 and the above, we conclude that in the A - region, where the -
it
process, {Xi}; i > 0, is ergodic, we have, !
<
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Z:S'(k)rrk = Z m o+ 2 E LA Z -

keC k:0 >2,m>0 k:0 _>2,m=-1 k:8 =1,m>0 k:0 =0,m>0
o— ' - ~1- o - o -

> >, nk=2‘1[1+ an-zx]

k:9 =0 or © .=0 k:m=-1
o -1

The left part of the above equation represents the limiting probability of an

empty slot. Also, E L E-l{L}, where E{L} is the expected session length

k:m=-1

induced by the algorithm. Thus, the limiting probability of an empty slot can be

found from the above equation, as a function of the expected session length.
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